1300=-16t^2+1800

Simple and best practice solution for 1300=-16t^2+1800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1300=-16t^2+1800 equation:



1300=-16t^2+1800
We move all terms to the left:
1300-(-16t^2+1800)=0
We get rid of parentheses
16t^2-1800+1300=0
We add all the numbers together, and all the variables
16t^2-500=0
a = 16; b = 0; c = -500;
Δ = b2-4ac
Δ = 02-4·16·(-500)
Δ = 32000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32000}=\sqrt{6400*5}=\sqrt{6400}*\sqrt{5}=80\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{5}}{2*16}=\frac{0-80\sqrt{5}}{32} =-\frac{80\sqrt{5}}{32} =-\frac{5\sqrt{5}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{5}}{2*16}=\frac{0+80\sqrt{5}}{32} =\frac{80\sqrt{5}}{32} =\frac{5\sqrt{5}}{2} $

See similar equations:

| 8x-14-2x=116 | | m+11=-42 | | -4n+n-5=1-4n+4n | | 98=2(k+25) | | 25=56+9x | | 4.5x=x-7* | | -k+8=k-6 | | 7s+3=94 | | -3-18g=14-6 | | -3.14(g-5)=-9.42 | | 10x+18+8x+20+7x+2=540 | | a24=−3(2a−15)−a | | X+2=5x-2(x+1) | | -35=8g+13 | | -84=-2(-8b-6) | | 8x-22=3x+38 | | 10q=-3+9q | | 7x(5x+30)=180 | | 2x+9+2x+1=90 | | –3x+3=–15+6x | | 1=0.75+0.5y | | 4(j+3)=56 | | 5e-11=34 | | 4=2x+1/2 | | -6x+14=-8x+36 | | 12+5x=7x*4 | | 6x+1=-691-x) | | 16.62+0,07(x+3)=15.37+0.15x | | -6x-x+10=15-7x-5 –6x–x+10=15–7x–5 | | x/7-12=15 | | x*2+(x-4)*2=72 | | |2b+10|=0 |

Equations solver categories